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Abstract
Leveraging query variants (QVs), i.e., queries with potentially similar information needs to the target query, has
been shown to improve the effectiveness of query performance prediction (QPP) approaches. Existing QV-based
QPP methods generate QVs facilitated by either query expansion or non-contextual embeddings, which may
introduce topical drifts and hallucinations. In this paper, we propose a method that retrieves QVs from a training
set (e.g., MS MARCO) for a given target query of QPP. To achieve a high recall in retrieving queries with the most
similar information needs as the target query from a training set, we extend the directly retrieved QVs (1-hop
QVs) by a second retrieval using their denoted relevant documents (which yields 2-hop QVs). Our experiments,
conducted on TREC DL’19 and DL’20, show that the QPP methods with QVs retrieved by our method outperform
the best-performing existing generated-QV-based QPP approaches by as much as around 20%, on neural ranking
models like MonoT5.
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1. Introduction

Query performance prediction (QPP) is the task of estimating the quality of retrieval results for a
target query without relevance judgements. As neural ranking models are increasingly applied in
IR, developing effective QPP methods for them has become an important task. However, the common
unsupervised post-retrieval QPP baselines, such as NQC [1], usually perform poorly for neural rankers
where the retrieval score distribution is not suitable for distinguishing retrieval quality based on
statistical characteristics [2]. We argue that the approach of Shtok et al. [3] that leverages the QPP
results of the queries with similar information needs as the target query (i.e. query variants, abbr.
QVs), which is useful for improving the QPP baselines’ effectiveness, can be potentially suitable for
QPP in neural rankers.

To provide reliable signals for incorporating the QPP of the target query, keeping the information
needs relatively invariant across the QVs is a core task in QV-based QPP [4]. The existing
methods mainly use feedback or non-contextual embeddings to automatically generate QVs [2], which
are prone to contain hallucinations and information drifts [5]. To tackle this difficulty, in this paper, we
propose a novel QV retrieval method from an IR training set. According to our experiments, QPP using
the QVs retrieved by our proposed methods shows better effectiveness than baselines.

The goal of retrieving QVs from a training set is to find the queries that are most similar to the target
one, which will then be included in a candidate QV set for QPP. However, due to the inherent deficiency
of representing an information need by a short query [4], directly retrieving QVs based on the target
query may be incapable of getting a high recall in retrieving similar queries. To address this problem,
we propose to use the relevant documents of the directly retrieved QVs (referred to as 1-hop QVs),
which are available as a part of the MS MARCO training set, to include more candidate QVs (referred
to as 2-hop QVs). Specifically, the relevant documents of the 1-hop QVs are formulated as queries to
retrieve 2-hop QVs from the query index, which is a process similar to relevance feedback [6]. Since
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Figure 1: An visualisation of the idea behind QPP with retrieved QVs. For a target query (the blue point), the
first step is to retrieve a list of 1-hop QVs (the green points) from an index constructed from the training query
set. In the second step, the relevant document associated with each 1-hop candidate (the italicised texts) is used
as a query to further retrieve 2-hop QVs (the amber points). The combination of 1-hop and 2-hop QVs comprises
the target query’s 2-hop neighbourhood, which defines the range of the final candidate QV set.

2-hop QVs implicitly contain relevant information from the 1-hop QVs, they can still be topically related
to the information the target query’s information needs and act as useful references in a QV-based QPP
model. The idea of the neighbourhood expansion from 1-hop QVs to 2-hop QVs is depicted in Figure 1.

The candidate QVs within the 2-hop neighbourhood (illustrated in Figure 1) comprise the final QV
candidate set. In the next step, the candidate QVs are re-ranked according to the similarities between
their top retrieved documents and the target query’s retrieval result (by means such as RBO [7]), which is
a more effective indicator of the similarity between information needs than simply measuring similarity
between queries. The top-ranked QVs after the re-ranking are subsequently used in the QV-based QPP.
In our experiments, compared with existing QV-based QPP methods, the QPP estimations using the
QVs retrieved by our proposed methodology largely enhance the QPP effectiveness for neural retrieval
models. For instance, our QPP method based on retrieved QVs improves the QPP effectiveness on
MonoT5 by around 20% in comparison to that of generated QVs. Therefore, the innovation in exploiting
the resources provided by IR training sets to retrieve QVs that can be helpful for QV-based QPP is the
main contribution of our work.

In the next section, we review the work related to QV-based QPP. Section 3 introduces the methodol-
ogy of QV retrieval. Section 4 is about the settings and results of the experiments which test the QPP
approaches based on the QVs retrieved by our proposed method. Section 5 concludes this paper with
directions for future work.

2. Related Work

Unsupervised QPP methods. QPP models can be categorised into pre- and post-retrieval ones
based on whether the retrieval results are available to a prediction model. In pre-retrieval QPP
methods, a query’s performance is estimated by only using the information from the query and the
collection statistics, and thus their prediction objective is either the specificity [8] or difficulty [9] of a
query. It can be interpreted as the prediction of the expected retrieval quality which is not specific to
any retrieval models. In contrast, post-retrieval QPP methods are capable of utilising useful signals
from the content and the scores of the top-retrieved documents to predict the retrieval quality [10].
The underlying hypothesis common to various post-retrieval predictors is the separability of the top
retrieved documents from the remaining ones: a high separability is a likely indicator of the relevance
of the top-retrieved documents [11]. To avoid the effect of outliers, some QPP approaches randomly
sample subsets of the top-retrieved documents and then aggregate the predictions over each subset [12].



QV-based QPP methods. In principle, any statistical estimation method can be improved with the
availability of a large number of observation points [13]. In the context of QPP, since a post-retrieval
estimator relies on the computation of statistical measures such as the variance of the retrieval score [1],
the estimate for a query can be improved by leveraging information from the queries with information
needs similar to the target query (referred to as query variants (QVs) in [4]). Usually, an unsupervised
QV-based QPP method first generates QVs using relevance feedback [14] or word2vec embeddings [15],
as done by WRIG [2]. Then, it uses each generated QV to retrieve reference lists of documents for
QPP [3]. A base predictor, e.g., NQC, is applied to each reference list. The weighted average across
those predictions is yielded as the final prediction.

Apart from QV generation, retrieving QVs has also been performed by Ebrahimi et al. [16] in their
supervised QPP method. They concatenate the retrieved QVs and their estimated performances (based
on the relevance judgements in the training set) to the target query and its retrieval results. In this way,
neighbourhood information is encoded in the target query’s expression to help the cross-encoder to
predict its performance. However, the training queries usually only have shallow annotated relevance
judgments, which leads to the concatenated QVs’ performances being unreliable. Therefore, their
training data might be unavoidably noisy, which can potentially influence QPP effectiveness.

Research Gaps. Although Ebrahimi et al. [16] also retrieve QVs from a training set, they did not
deeply investigate how to obtain high-quality QVs. In our research, instead of merely using 1-hop
QVs which are directly retrieved by the target query, we explore retrieving 2-hop QVs to extend the
candidate QV set to improve the effectiveness of QV-based QPP. The details about our QV retrieval
model follow in the next section.

3. Query Variant Retrieval based QPP Methodology

This section first provides a brief technical introduction to the QV-QPP model of [4] (Section 3.1),
following which we describe the proposed QV retrieval component in detail (Section 3.2).

3.1. Smoothing Estimates from QVs

A post-retrieval QPP model 𝜙 takes a target query 𝑄 and its retrieval result 𝐿𝑀(𝑄) obtained by a
target retriever 𝑀 as input. 𝜙 outputs a score to indicate the quality of 𝐿𝑀(𝑄). Formally speaking,
𝜙 ∶ 𝐿𝑀(𝑄) ↦ ℝ. In QV-based QPP models, the predictor function 𝜙 depends not only on a target query
and its retrieved documents but also on a set of query variants (QVs) that contain similar information
needs as 𝑄. Formally speaking, 𝜙+ ∶ 𝐿𝑀(𝑄), E(𝑄) ↦ ℝ, where E(𝑄) denotes a set of variants of 𝑄.

We develop our QV-based QPP framework based on the method proposed in [4], which aggregates
the QPP estimates for 𝑄 and its QVs by linear combination. Formally, the predictor in [4] is defined as

𝜙+𝑀(𝐿𝑀(𝑄), E(𝑄)) = (1 − 𝜆)𝜙(𝐿𝑀(𝑄)) + 𝜆∑
𝑄′∈E(𝑄)

𝜎(𝑄, 𝑄′)𝜙(𝐿𝑀(𝑄′))
𝜎(𝑄)

, (1)

where 𝜎 is a function measuring the similarity of information needs between a pair of queries 𝜎(𝑄, 𝑄′),
and 𝜎(𝑄) = ∑𝑄′∈E(𝑄) 𝜎(𝑄, 𝑄′), which is the average over all the QVs in E(𝑄). Equation (1) linearly
combines the QPP estimations for the target query and the QVs (the same base predictor 𝜙 is used for
both). The relative importance of the estimates about QVs is controlled by the parameter 𝜆 ∈ [0, 1].
The QPP about QVs is a weighted average across all the QVs in E , where the similarity measure
between a pair of queries 𝜎(𝑄, 𝑄′) is used to determine the relative contribution (weight) of each QV 𝑄′.
Following Zendel et al. [4], we use rank-biased overlap (RBO) similarity [7] as 𝜎, as this QPP estimator
puts a higher emphasis on the contribution from the QVs that contains similar information needs as
the target query.
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Figure 2: Schematic representation of the idea of collecting second-hop neighbourhood queries by extending
the set of 1-hop neighbours E 1(𝑄) with the set of relevant documents 𝑅(𝑄′) for each first-hop query 𝑄′.

In Equation (1), base predictor 𝜙 yields the QPP estimates for QVs based on their retrieval results
obtained by the same retriever 𝑀 as the target query. Our proposed QPP framework generalises
Equation (1) by setting an internal retriever for the QVs:

𝜙+𝑀 ′(𝐿𝑀(𝑄), E(𝑄)) = (1 − 𝜆)𝜙(𝐿𝑀(𝑄)) + 𝜆∑
𝑄′∈E(𝑄)

𝜎(𝑄, 𝑄′)𝜙(𝐿𝑀 ′(𝑄′))
𝜎(𝑄)

, (2)

where 𝑀′ is an internal retriever of 𝜙+, which is allowed to be separate from the target retriever 𝑀.
Therefore, when𝑀 is a neural ranker,𝑀′ can still be an efficient lexical retriever. Moreover, considering
the base predictor 𝜙 (e.g. NQC) can be ineffective for neural retrievers [2], this separation can bring
additional reliability to the QPP estimation for the target query. In our experiments, we set 𝑀′ ≡ 𝐵𝑀25.

3.2. Retrieving the Query Variants

In our proposed method, QVs in E are retrieved from the training set. The key motivation for using
retrieved QVs, instead of generating them based on relevance feedback or non-contextual embeddings,
is that these queries are formulated by real users and, thereby, are more likely to represent real-life
information needs and less likely to be hallucinatory.

1-hop QV retrieval. In the 1-hop QV-based QPP approach, the QV set in Equations (2) corresponds
to E1(𝑄), which is a set of top-𝑘 most similar queries directly retrieved from a query collection Q by
the target query 𝑄. This makes E1(𝑄) depending on a similarity function that, given a target query 𝑄,
is used to compute its 𝑘 nearest neighbours, which is denoted as

E1(𝑄) ≡ N𝑘(𝑄, 𝜎) ⊂ Q, (3)

where N𝑘 is a neighbourhood of size 𝑘, and 𝜎 is a similarity function. In practice, we employ RBO as 𝜎,
similar to experiments conducted in [2, 4]. However, since the RBO similarities are the rank-biased
overlap between the retrieval results of two queries, it can only be calculated once we have got the
retrieval results for them. Therefore, the process of retrieving candidate QVs and then finding the 𝑘
QVs most similar to 𝑄 is like retrieval and re-ranking in retrieving documents. Firstly, we obtain a
candidate set of 𝑛(> 𝑘) top-retrieved queries using an indexed query collection Q. Then, we compute
each candidate’s RBO (with respect to the target query) to rerank the list and extract the top-𝑘 QVs
with the largest RBO scores. This set forms the set of 1-hop QVs. As specific choices for retrieving the
1-hop candidates, we employ both a BM25 sparse index and a dense index of SBERT [17] embeddings.

2-hop QV retrieval. A limitation of retrieving 1-hop QVs is that the queries most similar to 𝑄 may
not be easily retrieved based on 𝑄 itself. The root of this low recall in retrieving high-quality QVs is



the ambiguity of representing an information need by a short query. To alleviate this limitation, we
leverage the associated relevant documents of each 1-hop query to expand the candidate QV set with
2-hop QVs, which has a bigger chance of retrieving more high-quality QVs.

Let us denote the set of relevant documents for each query 𝑄′ ∈ Q by 𝑅(𝑄′). We argue that this
relevance information for a 1-hop QV 𝑄′ can further help to identify the actual information need of 𝑄′,
which, in turn, is potentially close to that of 𝑄. In the light of this idea, we (1) construct a pseudo-query
𝑄′
𝐷 from each document 𝐷 ∈ 𝑅(𝑄′), then (2) execute 𝑄′

𝐷 on the index of queries Q to obtain another list
of “2-hop” queries E(𝑄′

𝐷). The idea is visualised in Figure 2, where the set of relevant documents for
each first-level QV is used to retrieve the second-level ones (the bottom row of queries). Formally,

E2(𝑄) = ⋃
𝑄′∈N𝑘(𝑄,𝜎)

⋃
𝐷∈𝑅(𝑄′)

N𝑘(𝑄𝐷, 𝜎), (4)

where E2(𝑄) denotes the set of 2-hop QVs. We then merge the E1(𝑄) and E2(𝑄) as the final candidate
QV set from where we select the QVs for QPP:

E+(𝑄) = E1(𝑄) ∪ E2(𝑄), (5)

where E+(𝑄) is the merged QV set containing both 1-hop and 2-hop retrieved QVs of 𝑄. Similar to
the 1-hop approach, we compute the RBO scores across the QVs in E+(𝑄) and take the QVs with
the highest-𝑘 RBO scores as the final nearest-𝑘 QVs. Those QVs can subsequently used in the QPP
framework as described in Equation (2).

4. Evaluation

4.1. Research Questions

The objective of our experiments is to confirm if the QVs retrieved by the proposed method can lead to
more effective estimations of retrieval quality. Therefore, we raise the following research questions
about the effectiveness of applying retrieved QVs for QPP and the necessity of using 2-hop QVs.

• RQ-1: Are retrieved query variants from a training set more effective than query variants generated by
non-contextual embedding or relevance feedback approaches (namely the ones used in Datta et al. [2])?

• RQ-2: Can the information from the relevant documents of 1-hop QVs be useful to yield a candidate QV
set leading to better QPP estimates?

4.2. Experiment Settings

Datasets. We conduct our experiments on the MS MARCO passage collection benchmark [18] with
queries from TREC DL’19 [19] and DL’20 [20] test sets. The QV candidates are retrieved from the MS
MARCO training set containing over 800K examples of query-relevant document pairs.

Target Retrievers. Since the objective of this research is enhancing QPP effectiveness for neural
IR, we evaluate our proposed QPP approach and baselines on the following neural ranking models: (i)
BM25»MonoT5 [21] 1: After retrieving an initial candidate of 100 documents with BM25 (using a sparse
index), we re-rank the top 100 results by MonoT5, a cross-encoder mode. (ii) BM25»BERT [22]2: BERT
is a contextualised language model that can be used to obtain embeddings of queries and documents
utilising the classification token (CLS) [23]. We use a model that was fine-tuned on the MS MARCO
Passage dataset to re-rank the top 100 BM25-retrieved passages. (iii) TCT-ColBERT[24]: A neural
retriever trained by distilling knowledge from ColBERT [25]. We use this model to test the performance
of our QPP methods for end-to-end neural retrieval.
1Huggingface id castorini/monot5-base-msmarco
2Huggingface id capreolus/bert-base-msmarco



Internal Retriever (Retrieval of Documents with QVs). As described in Section 3.1, the internal
retriever 𝑀′ in Equation (2) (i.e., the model which is used to retrieve for the QVs) is always BM25 in
our experiments.

Related Query (QV) Retrieval Models. QVs are retrieved from the MS MARCO training query set
by: (i) BM25: A term-weighting, document length normalisation-based classic IR model. (ii) Sentence-
BERT [17]: A CLS-pooling-based bi-encoder BERT model pre-trained on the MS MARCO training set
triples, which is abbreviated as SBERT in the rest of this paper. For all the QV-based QPP methods, we
re-rank the candidate QVs by their RBO [7] similarities with the target query and then take the top-𝑘
ones for the smoothing estimation in Equation (2).

Parameters and Settings. We employ Kendall’s 𝜏 as the QPP effectiveness evaluation metric. Since
different target IR measures can cause significant variations in QPP outcomes [26], we report our
experiments with two target IR metrics, namely AP@100 and nDCG@10 - the latter being top-rank
precision-focused. For computing AP, documents with a relevance label of 2 or higher are considered
relevant [19].

We evaluate the experimented QPP methods with a 2-fold setup: in the first fold, hyper-parameters
are trained on DL’19 and tested on DL’20, and the other way around in the second fold. The hyper-
parameters trained in every QV-based QPP method (named with ‘QV*’) are: (i) 𝑘, the number of QVs
used in the smoothing estimation, and (ii) 𝜆, the relative importance of the QV-based QPP smoothing
(see Equation (2) for more details).

4.3. Proposed QPP Methods and Baselines

As a common naming convention, we use the common prefix ‘QV’ to name the QV-based QPP ap-
proaches. As QPP baselines, we investigate the following approaches:

• Predictors without QVs: (i) NQC [1], which estimates the retrieval quality by measuring the
skewness of retrieval score distribution in the top-ranked documents, and (ii) UEF [12], which
samples subsets from the top-ranked documents for estimating the robustness of retrieval quality.
We choose NQC as the base predictor for UEF, as described on [2]. Both NQC and UEF also serve as
base predictors for the QV-based methods.

• Predictors using generated QVs: We employ the methods proposed in [4], where the QVs (set
E of Equation (2)) are generated by the methodology proposed in [2]. There are two methods with
different ways of QV generation: (i) QV-RLM: generating QVs by query expansion via a Relevant
Language Model (RLM), which is RM3 [14] in our implementation, (ii) QV-W2V: generating QV by
adding semantically similar terms by using the non-contextual embedding space of Word2Vec [15].

• Supervised Predictors: To compare our QV-based unsupervised QPP methods with their supervised
counterpart, we implement the cross-encoder-based QPP method BERTQPP [27]. We also implement
a variant of it, BERTQPP-QV [16], which considers QVs and their estimated query performance
when encoding the target query.

Experimented proposed predictors with retrieved QVs. The key difference between our methods
and the QV-based baselines (QV-RLM and QV-W2V) is the usage of retrieved QVs from a training set.
We place an ‘R’ in the names of the methods with retrieved QVs following ‘QV’. Additionally, we set the
superscript of ‘R’ as ‘1’ or ‘2’ to distinguish between the methods with 1-hop or 2-hop neighbourhood
considered when retrieving the QVs. According to whether the query retriever is the lexical BM25
or semantic SBERT, we test the following four variants of the proposed method: (1) QV-𝑅1-BM25:
This method uses 1-hop query variants only, i.e., only uses the set E of 1-hop neighbouring queries
(see Equation (3)) to smooth the predictor. The 1-hop QVs are retrieved by BM25. (ii) QV-𝑅2-BM25:
Like QV-𝑅1-BM25, it also uses BM25 as the query retriever. However, it extends the candidate QV set



Table 1
Comparisons between our proposed QPP method (‘Ours’) and the baselines (‘BL’) along with the two supervised
methods (‘Supervised’). QPP effectiveness is measured by Kendall’s 𝜏 with AP@100 and nDCG@10 as the target
metrics. Reported Kendall’s 𝜏 values are averaged over a 2-fold train-test split on TREC DL’19 and DL’20, with 𝜆
is tunable while 𝑘 is fixed to 1, as described in Equation (2). The best results for each metric with a particular
base QPP model are underlined. Comparing the best results obtained with NQC and UEF as the base QPP
model, the better ones are bold-faced. A ‘*’ alongside one of our proposed QPP approaches over a target metric
indicates that the reported result is statistically significant (by Fisher’s 𝑧-test at 99% confidence level) over the
corresponding base predictor.

BM25≫MonoT5 BM25≫BERT TCT-ColBERT

𝜙 Type Method AP-𝜏 nDCG-𝜏 AP-𝜏 nDCG-𝜏 AP-𝜏 nDCG-𝜏

NQC

BL
NQC 0.1673 0.0274 0.1278 0.0391 0.3991 0.2618
QV-W2V 0.2685 0.2041 0.2395 0.1520 0.3923 0.2521
QV-RLM 0.3308 0.1848 0.3045 0.1460 0.3920 0.2848

Ours

QV-𝑅1-BM25 0.3520 0.1918 0.3669* 0.2081 0.3954 0.2611
QV-𝑅1-SBERT 0.3361 0.2000 0.3558* 0.2016 0.4177 0.2561
QV-𝑅2-BM25 0.3694* 0.2298 0.3678* 0.2111 0.3878 0.2539
QV-𝑅2-SBERT 0.4033∗ 0.2573∗ 0.4250* 0.2517* 0.4022 0.2614

UEF

BL
UEF 0.1679 0.0341 0.1323 0.0399 0.3908 0.2732
QV-W2V 0.2674 0.1969 0.2290 0.1583 0.3892 0.2718
QV-RLM 0.3247 0.1940 0.2846 0.1594 0.3845 0.2998

Ours

QV-𝑅1-BM25 0.3438 0.1963 0.3567* 0.2247 0.3701 0.2782
QV-𝑅1-SBERT 0.3481 0.2044 0.3791* 0.2159 0.4080 0.2732
QV-𝑅2-BM25 0.3597 0.2325 0.3621* 0.2079 0.3832 0.2801
QV-𝑅2-SBERT 0.4026∗ 0.2540∗ 0.4375* 0.2630* 0.3619 0.2633

Supervised BERTQPP 0.2277 0.1746 0.1827 0.1328 0.2238 0.1326
BERTQPP-QV 0.2432 0.1728 0.2051 0.1459 0.2529 0.1514

with 2-hop QV selection as shown in Equation (5) and Figure 2. The superscript ‘2’ on ‘R’ indicates
2-hop QVs are used in this method. (iii) QV-𝑅1-SBERT: This is similar to QV-𝑅1-BM25 but employs an
embedding-space (semantic) approach to retrieve candidate 1-hop QVs. In particular, we use SBERT3 as
the query retriever. (iv)QV-𝑅2-SBERT: This method employs the same query retriever as QV-𝑅1-SBERT.
The difference is that it additionally adds 2-hop neighbours into the candidate QV set. Above retrieval
pipelines are implemented by PyTerrier [28]

4.4. Main Observations

We first present the main findings of our approach (relative to the baselines) with a single query variant,
i.e., we use 𝑘 = 1 in the general QV-QPP framework (Equation (2)). The performances of our QPP
approach over a range of different numbers of 𝑘 are reported in 4.5. Table 1 shows a comparison between
the baselines and the proposed approaches when 𝑘 = 1. In this table, the two groups of rows correspond
to the two experimented base predictors (denoted as 𝜙) - NQC and UEF. Each row in this table is either
a baseline or a variant of the proposed retrieved-QV-based method. The results of supervised BERT-QV
are listed at the bottom of this table for comparison. We highlight the following observations to answer
RQ1 and RQ2.

RQ1: RetrievedQVs yield better QPP effectiveness compared toRLMandW2V-based generated
QVs. In general, the baseline QPP methods with W2V- or RLM-generated QVs, are more effective
than the respective base predictors and the supervised predictors, especially for BM25»MonoT5 and
BM25»BERT where the retrieval scores are bounded by [0, 1]. For example, when the retriever is

3Huggingface id sentence-transformers/all-MiniLM-L6-v2
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(b) NQC on nDCG@10

Figure 3: A complete spectrum of the results of Table 1 showing the effect of 𝑘 for each tested QPP method.
The base predictor is NQC.

BM25»MonoT5, compare the 𝜏 values for the AP@100 with NQC (0.1673) vs. QV-RLM (0.3308) in Table
1 (this also conforms to the observations reported in [2]). Our proposed retrieval-based QV approach
outperforms the ones generated by either RLM and W2V. The difference between the proposed methods
and QV-RLM (the best baseline method) is larger when the target metric is AP@100, e.g., with NQC as the
base predictor, QV-𝑅1-BM25 achieves a 𝜏 of 0.3669 outperforming QV-RLM (0.3045). The QV-𝑅1-BM25
result is significantly better than NQC (Fisher’s 𝑧 test at a 99% confidence interval).

RQ2: Utilising relevant information of 1-hop QVs to retrieve 2-hop QVs enhances QPP ef-
fectiveness. This is observed by comparing the results between these two pairs of QPP methods -
1-hop and 2-hop for each QV retrieval method. For instance, Table 1 shows that with NQC as the base
predictor, the 2-hop method QV-𝑅2-SBERT outperforms the 1-hop method QV-𝑅1-SBERT (0.4033 vs.
0.3361). This improvement in correlation is at 80% confidence interval by Fisher’s 𝑧 test.

4.5. Parameter Sensivity

We conduct experiments to investigate the relation between the two hyper-parameters: 𝑘 - the number
of QVs, and 𝜆 - the relative importance of the QVs in the final QPP estimate described in Equation (2).

Effect of varying 𝑘 w.r.t. 𝜆s in QPP based on retrieved QVs. Figure 3 shows the QV-based QPP
results obtained with 𝑘 values in [1, 10]. Similar to Table 1, the values of 𝜆 are optimised on the train
splits of the 2-fold setup. The general trend observed in all the configurations of the retrieved QVs is
that QPP effectiveness decreases with the number of QVs 𝑘. This is expected because as 𝑘 increases, QVs
with smaller RBO values will be used for QPP. The low-RBO QVs are more likely than the higher-ranked
QVs to include information, which is unrelated to the intent of the input query, and hence degrading
the QPP effectiveness.

Effect of varying both 𝑘 and 𝜆 in QPP based on retrieved QVs. Figure 4 shows the joint effect
of both the parameters 𝑘 and 𝜆 on the retrieved-QV-based QPP models. To analyse 𝑘 and 𝜆 separately,
these results are not the average of a 2-fold setup with hyper-parameter tuning; instead, they show the
QPP effectiveness of each combination of 𝑘 and 𝜆 (𝑘 ∈ {1, 2, 3}, 𝜆 ∈ {0, 0.1, ..., 0.9, 1.0}).

First, as a general trend, comparing the proposed methods with QV-W2V and QV-RLM in Figure 4,
that QPP approaches with retrieved QVs are mostly better than the generated-QV-based QPP methods.
The only exception appears in TREC DL’19, where the QPP with the top-3 RLM-generated QVs produces
better results than the proposed QPP methods. In all other cases, the proposed methods perform better.
Moreover, the QPP methods with 2-hop QVs are consistently better than the ones with 1-hop QVs, thus
demonstrating the usefulness of the relevant documents in the training set.
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(b) DL’19: 𝑘 = 3
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(c) DL’19: 𝑘 = 5
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(d) DL’20: 𝑘 = 1
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(e) DL’20: 𝑘 = 3
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(f) DL’20: 𝑘 = 5

Figure 4: Effect of jointly varying both 𝑘 (#QVs), and 𝜆 (relative importance of the QVs) on DL’19 and DL’20 test
queries. The base estimator is NQC, and the target IR metric is AP@100.

To see what values of 𝑘 work well, we can compare the plots in Figure 4 horizontally (e.g., a->b->c).
For both DL’19 and DL’20 queries, we see that small 𝑘s work the best and 𝑘 = 1 yields the optimal
results. However, there is a considerable difference in the optimal value of 𝜆 in DL’19 and DL’20, which
can be seen from the fact that the best values for DL’19 usually appear when 𝜆 is close to 0.3, whereas
for DL’20, the highest values are concentrated on the right half of the 𝜆-axis, where 𝜆 > 0.5.

5. Concluding Remarks

Different from existing QV-based QPP methods, which use manually formulated QVs or generated
QVs based on relevance feedback or non-contextual embeddings, we explore the possibility of retrieving
QVs within the 2-hop neighbourhood of the target query from a training query set. We propose to
incorporate the retrieved QVs in the QPP for the target query and verify that our proposed methods
are more effective than existing QV-based QPP approaches for neural rankers, achieving about 20%
increase in AP-𝜏 relative to the best-performing baseline.

A likely reason for this improvement is that the proposed 2-hop QV retrieval can effectively retrieve
the queries which are most similar to the target query in terms of the information need from a training
set. For this reason, our work provides an appealing option for improving QPP effectiveness in real-life
scenarios where a query log with user interaction history is available. However, we notice that not every
target query can find its query variants from a training set with a fixed number of queries. Therefore,
in future, we would like to explore the possibility of integrating QV retrieval with LLM-based QV
generation in order to obtain QVs with small topical drifts for every target query.
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