

Query Performance Prediction for Adaptive IR and RAG

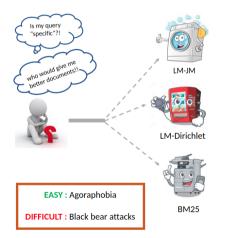
Debasis Ganguly University of Glasgow

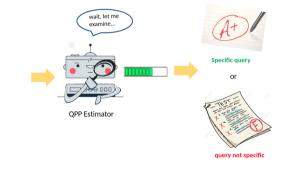
Table of Contents

QPP: A Brief Review

Introduction

Unsupervised approaches


Supervised approaches


QPP for Adaptive IR

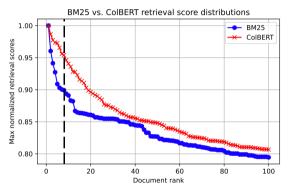
QPP for Adaptive RAG

University of Glasgow Query Performance Prediction for Adaptive IR and RAG

What is Query Performance Prediction (QPP)?

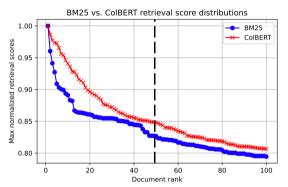
QPP Estimator Types

Pre-retrieval

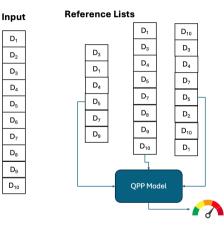

- Input: only a query
- Agnostic of retrieval model
- Leverages collection statistics
- Functional form: $\phi : \mathbf{Q}, \mapsto \mathbb{R}$

Post-retrieval

- Input: both a query and its top-retrieved list.
 - as obtained by a retrieval model θ .
- Prediction based on: How distinct is the top-k?
 - Distribution of retrieval scores, e.g., NQC.
 - Inter-document and collection-based measures, e.g., WIG, Clarity.
 - Robustness-based measures, e.g., UEF.
- Functional form: $\phi : Q, L_k^{\theta}$



Score-based approaches


- Skewness of scores \rightarrow relevant documents at the top
- A standard quantifier of skewness \rightarrow Variance.
- Prediction depends on:
 - Number of documents considered (cut-off rank).
- Different models exhibit different score distribution.
- Skewness hypothesis may not be true.

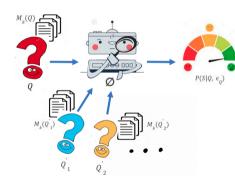
Score-based approaches

- Skewness of scores \rightarrow relevant documents at the top
- A standard quantifier of skewness \rightarrow Variance.
- Prediction depends on:
 - Number of documents considered (cut-off rank).
- Different models exhibit different score distribution.
- Skewness hypothesis may not be always true.

Reference Lists

- More data helps!
- Aggregate predictors over more data.
- A simple way to get more inputs: randomly sample from $L_k^{\theta}(\mathbf{Q})$

UEF:

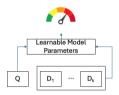

- Computes weighted average over random subsets.
- Weights: Stability of feedback models estimated for each list.

RLS:

• Takes a linear combination over the predictors for the reference lists and of the original input.

Query Variants to obtain Reference Lists

$$\phi(\mathbf{Q}, L_k^{\theta}(\mathbf{Q})) \equiv \lambda \phi(\mathbf{Q}, L_k^{\theta}(\mathbf{Q})) + (1 - \lambda) \sum_{\mathbf{Q}' \in \mathcal{E}_{\mathbf{Q}}} \phi(\mathbf{Q}', L_k^{\theta'}(\mathbf{Q}')) \sigma(\mathbf{Q}, \mathbf{Q}')$$

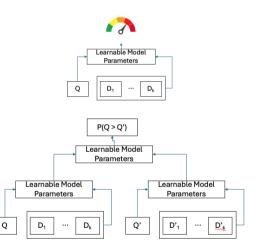

- \mathcal{E}_Q : Queries with similar information needs may be
 - manually generated (Zendel et. al., 2019),
 - automatically generated (Datta et. al., 2023),
 - retrieved from a query log (Tian et. al., 2025)
- The model θ may not be known, which means that a different model θ' , such as BM25, can be used to obtain the retrieved lists for each variant.
- $\sigma(Q, Q')$: Measure of information need similarity typically RBO of the top-retrieved.

Supervised Approaches

• $\phi : Q, L_k^{\theta}(Q) \mapsto \mathbb{R}$ – can be **learned from data**!

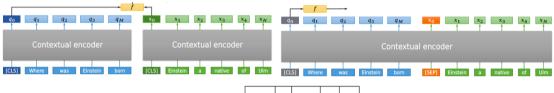
• Pointwise:

- $\mathcal{L}(\phi) = \sum_{\mathsf{Q} \in \mathcal{Q}} (\theta(\mathsf{Q}, L_k^{\theta}(\mathsf{Q})) \mathcal{M}(L_k^{\theta}(\mathsf{Q}), R(\mathsf{Q})))^2$
- $\bullet \ \mathcal{M} \text{ is an IR metric} \\$
- R(Q) a set of relevance assessments for Q
- \mathcal{Q} : training set of queries.


Supervised Approaches

• $\phi: \mathbf{Q}, \mathbf{L}_{k}^{\theta}(\mathbf{Q}) \mapsto \mathbb{R}$ – can be learned from data!

• Pointwise:


 $\mathcal{L}(\phi) = \sum_{\mathbf{Q} \in \mathcal{Q}} (\theta(\mathbf{Q}, L_k^{\theta}(\mathbf{Q})) - \mathcal{M}(L_k^{\theta}(\mathbf{Q}), \mathbf{R}(\mathbf{Q})))^2$

- ${\mathcal M}$ is an IR metric
- R(Q) a set of relevance assessments for Q
- \mathcal{Q} : training set of queries.
- Pairwise: Learn to compare between two queries.
- $\mathcal{L}(\phi) = \sum_{(\mathbf{Q},\mathbf{Q}')\in\mathcal{Q}\times\mathcal{Q}} \max(0, 1 \operatorname{sgn}(\mathbf{y}(\mathbf{Q}) \mathbf{y}(\mathbf{Q}')) \ (\hat{\mathbf{y}}(\mathbf{Q}; \phi) \hat{\mathbf{y}}(\mathbf{Q}'; \phi)))$
 - $y(Q) \equiv \mathcal{M}(L_k^{\theta}(Q), R(Q)))$: ground-truth evaluation measure
 - $\hat{y}(Q;\phi) = \phi(Q, L_k^{\theta}(Q))$ predicted evaluation measure

Late vs. Early Interaction

- Parameterized interactions between queries and documents.
- Bi-encoder (least parameters), cross-encoder (most parameters) or late interaction (good compromise).

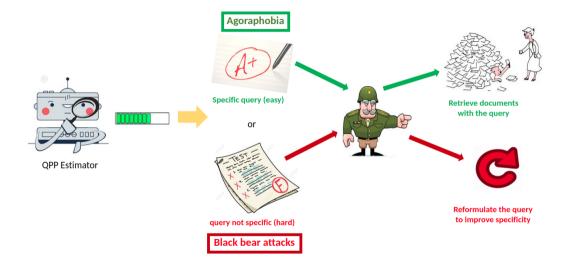
		Einstein	a	native	of	Ulm						
		x1	x_2	x 3	x4	<i>x</i> _{<i>N</i>}						
Where	q_1											
was	q_2											
Einstein	q ₃											
born	q_M											

Table of Contents

QPP: A Brief Review

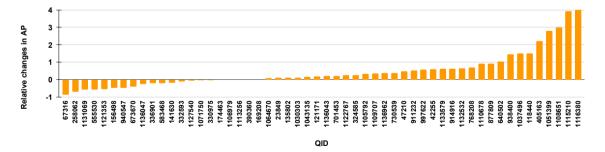
Introduction

Unsupervised approaches

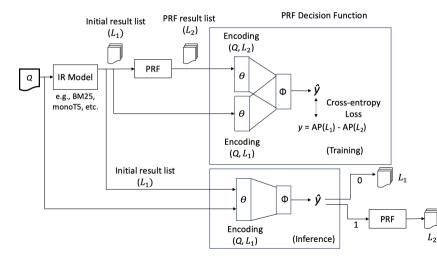

Supervised approaches

QPP for Adaptive IR

QPP for Adaptive RAG

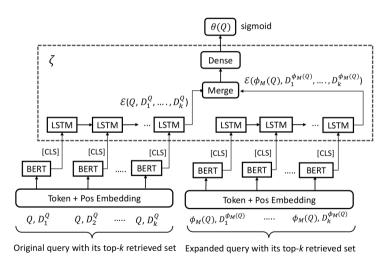

University of Glasgow Query Performance Prediction for Adaptive IR and RAG

What's the use of QPP?



QPP for Adaptive IR

- Multi-stage ranking models \rightarrow retrieve-rerank pipeline
- Stages with increasing computational complexity
 - BM25 » RM3, BM25 » Mono-T5, Contriever-E2E » Mono-T5 » Duo-T5 etc.
- Not all queries are benefited by the subsequent stages.



Classifier to select between two lists (Datta et. al. ECIR'24)

- **Training**: relevance assessments to decide which list is better.
- Inference: Locality hypothesis - Similar topics would behave similarly.

Model Architecture (Datta et. al. ECIR'24)

- Encodes sequence of documents with LSTMs.
- Cross-encoders not suitable to model $\langle D_1, \ldots, D_k \rangle$ when document sizes are relatively large.
- Soft selection: The Sigmoid *p* : 1 - *p* used as weights to combine the two lists.

Adaptive IR works

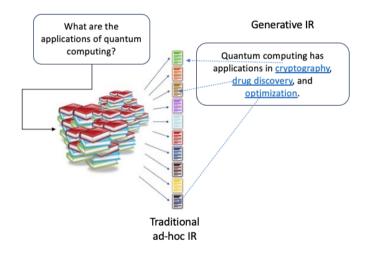
		BI	M25 (φ: Π	LM)	BI	M25 (φ: G	RF)	BM25 (<i>\phi</i> : ColBERT-PRF)		
	Methods	Accuracy	MAP	nDCG@10	Accuracy	MAP	nDCG@10	Accuracy	MAP	nDCG@10
	No PRF	N/A	0.3766	0.5022	N/A	0.3766	0.5022	N/A	0.3766	0.5022
	PRF	N/A	0.4321	0.5134	N/A	0.4883	0.6226	N/A	0.4514	0.6067
Baselines	R2F2	N/A	0.4381	0.5140	N/A	0.5094	0.6332	N/A	0.4968	0.6184
Daselines	QPP-SRF	0.7835	0.4400	0.5152	0.7844	0.5321	0.6667	0.7742	0.5238	0.6400
	TD2F	0.7611	0.4392	0.5135	0.7580	0.4579	0.5900	0.7642	0.4910	0.6038
	LR-SRF	0.7842	<u>0.4411</u>	<u>0.5154</u>	0.7784	0.5107	0.6512	0.7854	0.5254	0.6414
Ours	Deep-SRF-BERT Deep-SRF-BERT-R2F2	0.8081*	0.4705 0.4961	0.5374 0.5486	0.8093*	0.5654 0.5730	0.6821 0.6839	0.8165*	0.5631 0.5785	0.6765 0.6873
	Oracle	1.0000	0.5038	0.5528	1.0000	0.5876	0.6941	1.0000	0.5820	0.6936
		Мо	MonoT5 (<i>\phi</i> : RLM)		MonoT5 (<i>\phi</i> : GRF)			MonoT5 (<i>\phi</i> : ColBERT-PRF)		
	Methods	Accuracy	MAP	nDCG@10	Accuracy	MAP	nDCG@10	Accuracy	MAP	nDCG@10
	Methods No PRF	Accuracy N/A	MAP 0.5062	nDCG@10 0.6451	Accuracy	MAP 0.5062	nDCG@10 0.6451	Accuracy N/A	MAP 0.5062	nDCG@10 0.6451
Basalipas	No PRF	N/A	0.5062	0.6451	N/A	0.5062	0.6451	N/A	0.5062	0.6451
Baselines	No PRF PRF	N/A N/A	0.5062 0.5081	0.6451 0.6463	N/A N/A	0.5062 0.5200	0.6451 0.6487	N/A N/A	0.5062 0.5297	0.6451 0.6491
Baselines	No PRF PRF R2F2	N/A N/A N/A	0.5062 0.5081 0.5112	0.6451 0.6463 0.6484	N/A N/A N/A	0.5062 0.5200 0.5241	0.6451 0.6487 0.6494	N/A N/A N/A	0.5062 0.5297 0.5324	0.6451 0.6491 0.6502
Baselines	No PRF PRF R2F2 QPP-SRF	N/A N/A N/A <u>0.7963</u>	0.5062 0.5081 0.5112 <u>0.5189</u>	0.6451 0.6463 0.6484 <u>0.6559</u>	N/A N/A N/A 0.7871	0.5062 0.5200 0.5241 0.5313	0.6451 0.6487 0.6494 0.6604	N/A N/A N/A 0.7900	0.5062 0.5297 0.5324 0.5419	0.6451 0.6491 0.6502 <u>0.6673</u>
	No PRF PRF R2F2 QPP-SRF TD2F	N/A N/A <u>0.7963</u> 0.7789 0.7958	0.5062 0.5081 0.5112 <u>0.5189</u> 0.5071	0.6451 0.6463 0.6484 <u>0.6559</u> 0.6453	N/A N/A N/A 0.7871 0.7670 <u>0.7980</u>	0.5062 0.5200 0.5241 0.5313 0.4991	0.6451 0.6487 0.6494 0.6604 0.6403	N/A N/A 0.7900 0.7612 <u>0.7928</u>	0.5062 0.5297 0.5324 0.5419 0.5179	0.6451 0.6491 0.6502 <u>0.6673</u> 0.5986
Baselines Ours	No PRF PRF R2F2 QPP-SRF TD2F LR-SRF	N/A N/A N/A <u>0.7963</u> 0.7789	0.5062 0.5081 0.5112 <u>0.5189</u> 0.5071 0.5180	0.6451 0.6463 0.6484 <u>0.6559</u> 0.6453 0.6543	N/A N/A N/A 0.7871 0.7670	0.5062 0.5200 0.5241 0.5313 0.4991 <u>0.5422</u>	0.6451 0.6487 0.6494 0.6604 0.6403 <u>0.6628</u>	N/A N/A N/A 0.7900 0.7612	0.5062 0.5297 0.5324 0.5419 0.5179 <u>0.5500</u>	0.6451 0.6491 0.6502 <u>0.6673</u> 0.5986 0.6654

Table of Contents

QPP: A Brief Review

Introduction

Unsupervised approaches


Supervised approaches

QPP for Adaptive IR

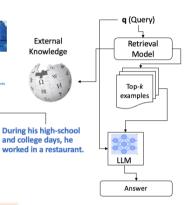
QPP for Adaptive RAG

University of Glasgow Query Performance Prediction for Adaptive IR and RAG

Generative IR

- Consuming relevant information as a ranked list of documents → more cognitive effort by users.
- A single generated answer with links to more information (if reqd.) → reduces user effort.

The role of retrieved information in RAG


Query: Who is Aziz Hashim?

Aziz Hashim 🕗 - 3rd Managing Partner at NRD Capital Atlanta, Georgia, United States - Contact infe 3,251 followers - 500+ connections

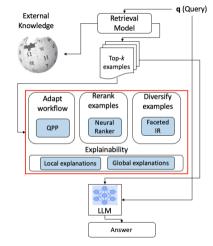
O-shot Answer: Aziz Hashim is a renowned American ← chef, restaurateur, and food writer of Indian descent

Sample Retrieved Document: Aziz Hashim is one of the world's leading experts on franchising and a highly regarded executive in the U.S. and international franchise space

RAG (Contextual) Answer: Aziz Hashim is a leading expert on franchising and a highly regarded executive in the U.S. and international franchise space. He is the Founder and Managing Partner of NRD Capital, which he founded in 2014.

- Zero-shot answers can contain misinformation.
- Conditional generation provides correct and more informative answers.

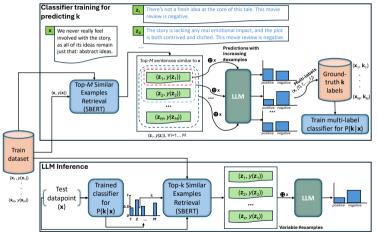
Adaptive RAG (Parry et al., 2024)


Query: Who is Aziz Hashim? Aziz Hashim ⊘ - Grd Managing Partner at NRD Capital Atlanta, Gaorgia, United Status - Contact info 3,251 followers - 500+ connections

O-shot Answer: Aziz Hashim is a renowned American -chef, restaurateur, and food writer of Indian descent

Sample Retrieved Document: Aziz Hashim is one of the world's leading experts on franchising and a highly regarded executive in the U.S. and international franchise space During his high-school and college days, he worked in a restaurant.

RAG (Contextual) Answer:


Aziz Hashim is a **leading expert on franchising** and a highly regarded executive in the U.S. and international franchise space. He is the Founder and Managing Partner of NRD Capital, which he founded in 2014.

 $_{\textbf{q}}\left(\textsc{Query}\right)$ \bullet QPP \rightarrow **utility** of a context

• Maybe applied to adjust the hyper-parameters of RAG, e.g., the number of documents etc.

Adapt RAG Context Size (Chandra et al., ECIR'25 - Best Paper)

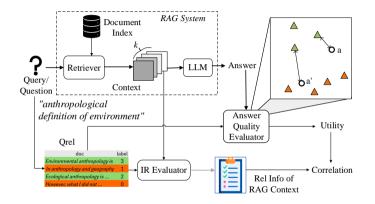
Static context size:

•
$$P(\mathbf{y}|\mathbf{x}, \mathbf{k}) = f(\mathbf{x}, \mathcal{N}_{\mathbf{k}}(\mathbf{x}); \phi_{\mathsf{LLM}})$$

• Dynamic context size (depends on input):

•
$$P(\mathbf{y}|\mathbf{x},\kappa) = f(\mathbf{x},\mathcal{N}_{\kappa(\mathbf{x})}(\mathbf{x});\phi_{\mathsf{LLM}})$$

•
$$\kappa : \mathbf{x} \mapsto \{0, \dots, M\}$$

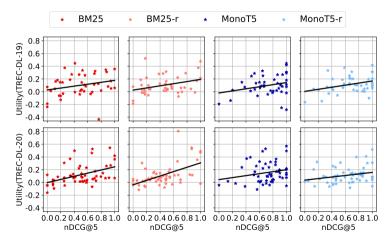

- Locality hypothesis: Topically similar questions (inputs) should have similar optimal context sizes.
 - M: upper bound of context size
- Training: Learn classifier with a downstream performance measure.
- Inference: context size is set to the integer predicted by the classifier.

Adapting context size helps!

		RAG	setup (w	ı∕o Labels)	ICL s	etup (w/	Labels)
Dataset	0-shot	FICL	AICL(E)	AICL*	FICL	AICL(E)	AICL*
SST2	.8914			.9610		.9300	.9863
TREC	.3526	.4287	.4752	.4922	.6192	.7196	.9313
CoLA	.2558	.2469	.2679	.7937	.6433	.6601	.9413
RTE	.6741	.6144	.6688	.8655	.7240	.7415	.9234

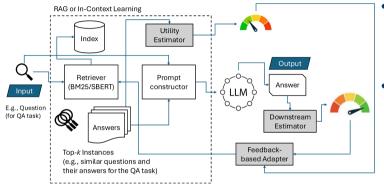
- Adaptive ICL with neighborhood homogeneity (AICL+E) outperforms Fixed ICL.
 - Improves results both for labeled and unlabeled data.
- Further improvement (see oracle results).

Utility of RAG contexts (Tian et al., ECIR'25)



- Some contexts are more useful than others.
- Only some lead to gains in performance measure w.r.t. zero-shot
- Utility: Relative gain in downstream performance
- Gains more important when 0-shot performance is low (similar to IR performance).

• Performance measure: semantic similarity with judged relevant documents (Arabzadeh et al., ECIR'24)


University of Glasgow Query Performance Prediction for Adaptive IR and RAG

Is Utility Correlated with Relevance?

- Is utility mainly a function of relevance, or there is something else to it?
- Positive but small correlation.
- Computationally expensive rankers don't add up much to RAG performance.

A Generic Adaptive RAG workflow

 Utility Estimator or Retriever-PP: QPP over RAG context

- Not in terms of relevance.
- But in terms of **utility**.
- **Downstream Estimator** or **Generator-PP**: Predict performance for the downstream answer.
 - Pre-generation (predict performance w/o generation)
 - Post-generation (predict performance *after generation*).
- Feedback: Feedback from these predictors can then be used to modify a RAG system.

Some preliminary results from work-in-progress

- RPP: Just apply a QPP method on the input and the RAG context.
- GPP: Treat the generated answer as a query, retrieving from the collection. Execute QPP on this list.
- Pre-generation GPP \approx Pre-retieval QPP (most challenging).

				Pre-CG Predictions							Post-CG Predictions					
			QF	PР		RPP			GPP			GPP				
			-		w/o posteriors		w/ posteriors		w/o posteriors		w/ posteriors		w/o posteriors		w/ posteriors	
θ_R	Туре	Method	DL'19	DL'20	DL'19	DL'20	DĽ19	DL'20	DL'19	DL'20	DL'19	DL'20	DL'19	DL'20	DL'19	DL'20
(RSV)	Unsupervised (RSV)	NQC UEF RSD	.1777 .1577 .1399	*.2988 *.3269 *.2876	.0365 .0565 .0432	*.2131 *.2341 *.2271	.0410 .0543 .0520	*.2551 *.2607 *.2509	.1096 .1096 .1074	.1530 .1391 .1530	.1473 .1606 .1517	*.2006 *.1978 *.2020	*.3621 * .3643 *.3621	*.2439 *.2411 *.2439	*.5061 *.5017 *.4928	*.3096 *.3082 *.3082
BM25	Unsupervised (EMB)	QPP-Dense A-Ratio	*.2776 *.3376	*.3297 *.3788	* .3200 .2004	* .3040 *.2257	.1340 .0100	* .4018 *.3389	* .2602 .0388	* .3068 .0594	* .3178 *.2647	* .4270 *.3403	*.2536 .1805	* .3110 *.2145	*.5127 * .5637	*.4326 * .4507
	Supervised	QPP-BERT QPP-BERT(QV)	*.3531 * .3598	* .4195 *.4167	.0720 .0853	*.2690 *.2774	.1074 .0919	*.3110 *.3040	.0210 0166	.1209 .1125	.1118 .1008	*.2271 *.1838	*.3178 *.2890	*.2565 *.2299	*.5194 *.4839	*.3725 *.3515

- Existing QPP approaches work fairly well.
- Possible scope of further improvements with additional features, such as coherence.

Ways to adapt a RAG system

- $\downarrow \text{RPP} \rightarrow \text{improve the retriever.}$
 - More computationally expensive ranker.
 - Increase the context size.
 - ...
- $\downarrow \text{GPP} \rightarrow \text{Improve the generator.}$
 - More computationally expensive generator (LLM with more parameters).
 - Reason (Chain of Thoughts).
 - ...

Thank you!

Questions?

Query Performance Prediction for Adaptive IR and RAG