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» Holistic evaluation of corpora “o L&

» Lightweight heuristics

 Comparisons in terms of the ability to
serve queries

* Linked to retrievabillity

* Provides additional applications of QPP
over multiple queries
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 Use QPP heuristics over domains "o L&

o Aggregate QPP measures are taken as
CPP measures

* |In doing so we can compare corpora by
the domains they are best suited to serve

* Conversely, akin to retrievability we can
observe domains for which queries are
difficult to serve across multiple corpora
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 We have test corpora which may be mined from a
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* 64 million queries, 550 providers (domains)

 Sample of 20000 queries over 15 providers
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"Entoprocta”
"Darwin Deez" "Constellations”
google "Cseretivegek” site:hu.wikipedia.org

"Samarqand Restaurant" -wikipedia
"Armas e equipamentos da Guerra Russo-Ucraniana" -wikipedia

HILICE 505 =552 o4 2713, WS-SQB641(210|E) =7
hijrah
naver 2z AHQIEA 43 = MiEF20S O, S=H =71
sumer
2l AJolEf !

ISSN "0340-1707"

payless All Size Waste Dumpsters Calgary
yahoo wichita craiglists

what causes vertigo in older adults

belvedere palace vienna
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Candidate Corpora

« MSMARCO Passage

 Minimal Test Collection Subsample

 [ouche Argument Retrieval
 NFCorpus
* Cranfield
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QPP Measures

* 12 measures implemented in QPPTK (dockerised in TIRA!)

* For this initial investigation we focus on WIG, SCQ, NQC and average-IDF
* Our approach could in principle apply any pre- or post-retrieval heuristic

* For post-retrieval in these preliminary findings we solely use BM25

* QOur initial study is primarily concerned with the feasibility of comparing
corpora by QPP measures, we make some assumptions about the
faithfulness of the QPP measures
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Overall Similarity

Table 2
Kendall’s 7 correlation between the NQC values of different corpora, across all search providers.
Touche MS MARCO Subsample NF Corpus Cranfield
Touche - 0.3225 0.4627 0.2313 - 0.0977
MS MARCO - - 0.2578 0 0.0845  0.0021
Subsample - - - 0.2925 01361
NF Corpus - - - -

0.3574
Cranfield - - - - -
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Granularity of Comparisons
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Per Domain Correlation

Table 3

Kendall’s 7 correlation between the NQC values of different corpora, grouped by search providers.

provider

Touche

MS MARCO  Subsample NF Corpus Cranfield

360

Touche
MS MARCO

Subsample
NF Corpus

Cranfield

aliexpress

Touche

MS MARCO
Subsample
NF Corpus
Cranfield

03416 0.6867 i
- - ~ 0.4661 ).2/65

— — \ |‘ VI ':.1 ::'»: v‘r. 2 % 1

amazon

Touche
MS MARCO

Subsample
NF Corpus

Cranfield

baidu

Touche

MS MARCO
Subsample
NF Corpus
Cranfield

0.5011 0.5932
: 0.4314
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Stability of Comparisons
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Future / Continuing Work

What causes CPP similarities?

e Domain?
e Sjze?

* Entropy reduction by query difficulty?
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What pitfalls from QPP may be reduced under aggregation

* Our correlation is on aggregate akin to system order

 Where precision at a query level is required for QPP, other methods may be
more feasible at the domain level

 Broader correlation studies are required

 LLM "aluminum judgements” come to mind to allow for validation of query
difficulty
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Future / Continuing Work

How fine-grained can our analysis be?

* |n making minor changes to a system or a corpus update
 Are domains still stable?

 Can we differentiate between a model better serving a domain and a
domain simply nhow having better coverage”

 How do we do this without LLMs? Exciting but expensive and under small
sample sizes comparisons are noisy






e CPP allows for holistic comparisons of corpora over a
shared reference set of diverse queries



e CPP allows for holistic comparisons of corpora over a
shared reference set of diverse queries

® Aggregation over topics leads to greater stability over
weaker heuristics



e CPP allows for holistic comparisons of corpora over a
shared reference set of diverse queries

® Aggregation over topics leads to greater stability over
weaker heuristics

® Domain- and corpus-level effectiveness prediction can
complement broader QPP evaluation



e CPP allows for holistic comparisons of corpora over a
shared reference set of diverse queries

® Aggregation over topics leads to greater stability over
weaker heuristics

® Domain- and corpus-level effectiveness prediction can
complement broader QPP evaluation

" Ly

Thanks for your attention! |.-"'|l':j;I:_|..-




